Package 'ScRNAIMM'

Title: Performing Single-Cell RNA-Seq Imputation by Using Mean/Median Imputation
Description: Performing single-cell imputation in a way that preserves the biological variations in the data. The package clusters the input data to do imputation for each cluster, and do a distribution check using the Anderson-Darling normality test to impute dropouts using mean or median (Yazici, B., & Yolacan, S. (2007) <DOI:10.1080/10629360600678310>).
Authors: Mohamed Soudy [aut, cre], Sascha Jung [aut], Antonio DEL SOL [aut]
Maintainer: Mohamed Soudy <[email protected]>
License: GPL-3
Version: 0.1
Built: 2024-11-03 04:05:46 UTC
Source: https://github.com/mohmedsoudy/scrnaimm

Help Index


Perform cell clustering based on scDHA method

Description

Cluster cells based on scDHA methods to get cluster labels

Usage

cluster_cells(ScRNA_filtered, Normalize = TRUE, k=NULL, n=5000)

Arguments

ScRNA_filtered

ScRNA-seq data set generated by filter_ScRNA function

Normalize

Boolean parameter whether to apply log10 normalization for the data or not

k

Number of clusters if there is a prior knowledge about that

n

Number of genes to keep after feature selection step

Value

a vector that contains the cell labels

Author(s)

Mohamed Soudy [email protected]


Evaluate the clustering if you have the original labels

Description

Evaluate the clustering if you have the original labels

Usage

evaluate_clustering(cluster_labels, original_labels)

Arguments

cluster_labels

Cluster labels generated by cluster_cells functions or user-defined

original_labels

Original labels of the ScRNA-seq data

Value

ARI of clustering 'a value between 0 and 1' 1 indicates best clustering

Author(s)

Mohamed Soudy [email protected]

Examples

evaluate_clustering(c(1,1,1,1,2,2,3,3), c(1,1,1,1,3,3,3,2))

Remove genes which are not expressed in at least one cell

Description

Filter out the genes that are not expressed in at least one cell type

Usage

filter_ScRNA(ScRNA_mat)

Arguments

ScRNA_mat

ScRNA-Seq matrix where genes are in rows and cells are in columns

Value

Filtered ScRNA-seq matrix that contains genes that are at least expressed in one cell type

Author(s)

Mohamed Soudy [email protected]


Prepare the data set for the imputation

Description

This function aims to get the indices where all genes are zeros or genes that is expressed on only one sample per cell

Usage

prepare_dataset(filtered_data, cluster_labels)

Arguments

filtered_data

ScRNA-seq data set generate by filter_ScRNA function

cluster_labels

cell labels

Value

a data frame that contains the processed ScRNA-seq data

Author(s)

Mohamed Soudy [email protected]


Run the main pipeline for ScRNAIMM

Description

Run the main pipeline for ScRNAIMM

Usage

run_pipeline(ScRNA,label=NULL,k=NULL,cells=TRUE,genes=TRUE,outdir=NULL,dataset=NULL)

Arguments

ScRNA

ScRNA-seq data set generated by prepare_dataset function

label

Prior knowledge about cluster labels if NULL, will use our clustering function

k

Prior knowledge about number of clusters if NULL, will use our clustering function

cells

Boolean whether to do the imputation based on cell clustering or not

genes

Boolean whether to do the imputation based on genes or not

outdir

Path to output directory to write the imputed data

dataset

Name of the data set to be the name of the output directory

Value

a data frame with the imputed values

Author(s)

Mohamed Soudy [email protected]


Perform ScRNA-seq imputation using mean/Median

Description

Perform ScRNA-seq imputation using mean/Median

Usage

ScRNA_imp_MM(ScRNA_filtered, cluster_labels = NULL, cells = TRUE, genes = FALSE)

Arguments

ScRNA_filtered

ScRNA-seq data set generated by prepare_dataset function

cluster_labels

Cluster labels generated by cluster_cells function or user-defined

cells

Boolean whether to do the imputation based on cell clustering or not

genes

Boolean whether to do the imputation based on genes or not

Value

a data frame with the imputed values

Author(s)

Mohamed Soudy [email protected]


Performs a distribution check for the data

Description

Performs a distribution check for the data

Usage

scRNA_MMI(scRNA_dataset)

Arguments

scRNA_dataset

ScRNA-seq data set

Value

ScRNA-Seq Imputed data set

Author(s)

Mohamed Soudy [email protected]