Package: MERO 0.1.2
MERO: Performing Monte Carlo Expectation Maximization Random Forest Imputation for Biological Data
Perform missing value imputation for biological data using the random forest algorithm, the imputation aim to keep the original mean and standard deviation consistent after imputation.
Authors:
MERO_0.1.2.tar.gz
MERO_0.1.2.zip(r-4.5)MERO_0.1.2.zip(r-4.4)MERO_0.1.2.zip(r-4.3)
MERO_0.1.2.tgz(r-4.4-any)MERO_0.1.2.tgz(r-4.3-any)
MERO_0.1.2.tar.gz(r-4.5-noble)MERO_0.1.2.tar.gz(r-4.4-noble)
MERO_0.1.2.tgz(r-4.4-emscripten)MERO_0.1.2.tgz(r-4.3-emscripten)
MERO.pdf |MERO.html✨
MERO/json (API)
# Install 'MERO' in R: |
install.packages('MERO', repos = c('https://mohmedsoudy.r-universe.dev', 'https://cloud.r-project.org')) |
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
Last updated 2 years agofrom:4988b8ecf7. Checks:OK: 7. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 20 2024 |
R-4.5-win | OK | Nov 20 2024 |
R-4.5-linux | OK | Nov 20 2024 |
R-4.4-win | OK | Nov 20 2024 |
R-4.4-mac | OK | Nov 20 2024 |
R-4.3-win | OK | Nov 20 2024 |
R-4.3-mac | OK | Nov 20 2024 |
Exports:EvalImpMEROPlotCorrelateMeanRMSE
Dependencies:abindbackportsbootbroomcarcarDataclicodetoolscolorspacecorrplotcowplotcpp11crayonDerivdigestdoBydoParalleldoRNGdplyrfansifarverforeachFormulagenericsggplot2ggpubrggrepelggsciggsignifgluegridExtragtablehmsisobanditeratorsitertoolslabelinglatticelifecyclelme4magrittrMASSMatrixMatrixModelsmgcvmicrobenchmarkminqamissForestmodelrmunsellnlmenloptrnnetnumDerivpbkrtestpillarpkgconfigpolynomprettyunitsprogresspurrrquantregR6randomForestRColorBrewerRcppRcppEigenrlangrngtoolsrstatixscalesSparseMstringistringrsurvivaltibbletidyrtidyselectutf8vctrsviridisLitewithr