Package: ScRNAIMM 0.1
ScRNAIMM: Performing Single-Cell RNA-Seq Imputation by Using Mean/Median Imputation
Performing single-cell imputation in a way that preserves the biological variations in the data. The package clusters the input data to do imputation for each cluster, and do a distribution check using the Anderson-Darling normality test to impute dropouts using mean or median (Yazici, B., & Yolacan, S. (2007) <doi:10.1080/10629360600678310>).
Authors:
ScRNAIMM_0.1.tar.gz
ScRNAIMM_0.1.zip(r-4.5)ScRNAIMM_0.1.zip(r-4.4)ScRNAIMM_0.1.zip(r-4.3)
ScRNAIMM_0.1.tgz(r-4.4-any)ScRNAIMM_0.1.tgz(r-4.3-any)
ScRNAIMM_0.1.tar.gz(r-4.5-noble)ScRNAIMM_0.1.tar.gz(r-4.4-noble)
ScRNAIMM_0.1.tgz(r-4.4-emscripten)ScRNAIMM_0.1.tgz(r-4.3-emscripten)
ScRNAIMM.pdf |ScRNAIMM.html✨
ScRNAIMM/json (API)
# Install 'ScRNAIMM' in R: |
install.packages('ScRNAIMM', repos = c('https://mohmedsoudy.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/mohmedsoudy/scrnaimm/issues
Last updated 1 years agofrom:ffc0dab158. Checks:OK: 1 NOTE: 6. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 03 2024 |
R-4.5-win | NOTE | Nov 03 2024 |
R-4.5-linux | NOTE | Nov 03 2024 |
R-4.4-win | NOTE | Nov 03 2024 |
R-4.4-mac | NOTE | Nov 03 2024 |
R-4.3-win | NOTE | Nov 03 2024 |
R-4.3-mac | NOTE | Nov 03 2024 |
Exports:cluster_cellsevaluate_clusteringfilter_ScRNAprepare_datasetrun_pipelineScRNA_imp_MMscRNA_MMI
Dependencies:BHbitbit64callrcliclustercodetoolscorocpp11descdoParalleldplyrdqrngellipsisfansiFNNforeachgenericsglueigraphirlbaiteratorsjsonlitelatticelifecyclemagrittrMatrixmatrixStatsmclustnortestpillarpkgconfigprocessxpsR6RcppRcppAnnoyRcppArmadilloRcppEigenRcppParallelRcppProgressRhpcBLASctlrlangRSpectrasafetensorsscDHAsitmotibbletidyselecttorchutf8uwotvctrswithr
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Perform cell clustering based on scDHA method | cluster_cells |
Evaluate the clustering if you have the original labels | evaluate_clustering |
Remove genes which are not expressed in at least one cell | filter_ScRNA |
Prepare the data set for the imputation | prepare_dataset |
Run the main pipeline for ScRNAIMM | run_pipeline |
Perform ScRNA-seq imputation using mean/Median | ScRNA_imp_MM |
Performs a distribution check for the data | scRNA_MMI |