Package: ScRNAIMM 0.1

ScRNAIMM: Performing Single-Cell RNA-Seq Imputation by Using Mean/Median Imputation

Performing single-cell imputation in a way that preserves the biological variations in the data. The package clusters the input data to do imputation for each cluster, and do a distribution check using the Anderson-Darling normality test to impute dropouts using mean or median (Yazici, B., & Yolacan, S. (2007) <doi:10.1080/10629360600678310>).

Authors:Mohamed Soudy [aut, cre], Sascha Jung [aut], Antonio DEL SOL [aut]

ScRNAIMM_0.1.tar.gz
ScRNAIMM_0.1.zip(r-4.5)ScRNAIMM_0.1.zip(r-4.4)ScRNAIMM_0.1.zip(r-4.3)
ScRNAIMM_0.1.tgz(r-4.4-any)ScRNAIMM_0.1.tgz(r-4.3-any)
ScRNAIMM_0.1.tar.gz(r-4.5-noble)ScRNAIMM_0.1.tar.gz(r-4.4-noble)
ScRNAIMM_0.1.tgz(r-4.4-emscripten)ScRNAIMM_0.1.tgz(r-4.3-emscripten)
ScRNAIMM.pdf |ScRNAIMM.html
ScRNAIMM/json (API)

# Install 'ScRNAIMM' in R:
install.packages('ScRNAIMM', repos = c('https://mohmedsoudy.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/mohmedsoudy/scrnaimm/issues

On CRAN:

2.70 score 123 downloads 7 exports 54 dependencies

Last updated 1 years agofrom:ffc0dab158. Checks:OK: 1 NOTE: 6. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 03 2024
R-4.5-winNOTENov 03 2024
R-4.5-linuxNOTENov 03 2024
R-4.4-winNOTENov 03 2024
R-4.4-macNOTENov 03 2024
R-4.3-winNOTENov 03 2024
R-4.3-macNOTENov 03 2024

Exports:cluster_cellsevaluate_clusteringfilter_ScRNAprepare_datasetrun_pipelineScRNA_imp_MMscRNA_MMI

Dependencies:BHbitbit64callrcliclustercodetoolscorocpp11descdoParalleldplyrdqrngellipsisfansiFNNforeachgenericsglueigraphirlbaiteratorsjsonlitelatticelifecyclemagrittrMatrixmatrixStatsmclustnortestpillarpkgconfigprocessxpsR6RcppRcppAnnoyRcppArmadilloRcppEigenRcppParallelRcppProgressRhpcBLASctlrlangRSpectrasafetensorsscDHAsitmotibbletidyselecttorchutf8uwotvctrswithr